Прочность металлического композита оказалась тем выше, чем хуже связи внутри него
Российские ученые показали, что прочность композита с алюминиевой матрицей и углеродным волокном зависит от силы связи его компонентов. Оказалось, что, когда прочность границы между ними снижается, устойчивость композита к разрушению, наоборот, увеличивается за счет предотвращения распространения трещин. Математическая интерпретация этого явления, предложенная в работе, позволит прогнозировать свойства подобных композитов, а также расширить область их практического применения. Исследование поддержано грантом Российского научного фонда. В авиа—, машино— и судостроении вместо обычных металлов часто используются композиты, которые состоят из нескольких разных по физическим свойствам компонентов: например, это может быть сочетание металла и неметалла. Такие комбинации придают материалу новые свойства, отличные от тех, что были у составляющих его компонентов по отдельности: это может быть большая прочность, износостойкость, особенные электромагнитные свойства. Существует множество типов композитных материалов, один из которых — волокнистые. Они состоят из матрицы, то есть основного материала, в который погружены тонкие нити второго компонента, необходимого для укрепления. Роль матрицы могут выполнять полимеры, металлы или керамика. В качестве «арматуры» обычно выступают углеродные, карбидокремниевые, борные или стеклянные волокна. В результате такого сочетания композит приобретает высокую прочность, жесткость, в то же время у него меньше вес, благодаря чему композит может использоваться в силовых конструкциях самолетов, ракет и других летательных аппаратов. Ученые из Института физики твердого тела им. Ю. А. Осипьяна РАН (Черноголовка) исследовали, как изменяется прочность (на изгиб - прим.MetalTorg.Ru) волокнистого композита при изменении свойств границы между его компонентами. В качестве матрицы авторы использовали сплав алюминия и олова, а армировкой служило углеродное волокно. Углеродные нити протягивали через расплав металлов, подвергнутый ультразвуковой обработке, в результате чего получили композитную проволоку. Свойства границы раздела в композите физики изменяли с помощью нагрева до температуры от 300°С до 600°С. После этого исследовали прочность и характер разрушения полученных образцов. Оказалось, что по мере увеличения температуры поверхность углеродных волокон покрывалась мелкими кристаллами карбида алюминия. В результате этого прочность границы между компонентами становилась выше, а вот прочность композитной проволоки постепенно снижалась. Сильная связь между компонентами приводит к тому, что, когда в материале при нагрузке возникает трещина, она распространяется только в той плоскости, в которой изначально образовалась. Композит быстро разрушается. Напротив, «слабая» граница препятствует развитию трещины и служит для нее своего рода стопором, и ее распространение происходит по сложной траектории, что позволяет волокну в композите в полной мере реализовать свой потенциал прочности. «Наше исследование демонстрирует влияние одного из самых важных параметров, определяющих механические свойства композита,— прочности границы. Благодаря интерпретации этих данных нам удалось сделать шаг к созданию математической модели прочности волокнистых композитов с металлической матрицей. Глубокое понимание механики разрушения таких структур подскажет нам, как организовать технологию производства композитов, чтобы в полной мере реализовать их потенциал. В будущем именно этим мы и планируем заняться»,— рассказывает руководитель проекта, поддержанного грантом РНФ, Сергей Галышев, кандидат технических наук, старший научный сотрудник Института физики твердого тела им. Ю. А. Осипьяна РАН.
Прочность металлического композита оказалась тем выше, чем хуже связи внутри него
Российские ученые показали, что прочность композита с алюминиевой матрицей и углеродным волокном зависит от силы связи его компонентов. Оказалось, что, когда прочность границы между ними снижается, устойчивость композита к разрушению, наоборот, увеличивается за счет предотвращения распространения трещин. Математическая интерпретация этого явления, предложеннаяв работе , позволит прогнозировать свойства подобных композитов, а также расширить область их практического применения. Исследование поддержано грантом Российского научного фонда.
В авиа—, машино— и судостроении вместо обычных металлов часто используются композиты, которые состоят из нескольких разных по физическим свойствам компонентов: например, это может быть сочетание металла и неметалла. Такие комбинации придают материалу новые свойства, отличные от тех, что были у составляющих его компонентов по отдельности: это может быть большая прочность, износостойкость, особенные электромагнитные свойства.
Существует множество типов композитных материалов, один из которых — волокнистые. Они состоят из матрицы, то есть основного материала, в который погружены тонкие нити второго компонента, необходимого для укрепления. Роль матрицы могут выполнять полимеры, металлы или керамика. В качестве «арматуры» обычно выступают углеродные, карбидокремниевые, борные или стеклянные волокна. В результате такого сочетания композит приобретает высокую прочность, жесткость, в то же время у него меньше вес, благодаря чему композит может использоваться в силовых конструкциях самолетов, ракет и других летательных аппаратов.
Ученые из Института физики твердого тела им. Ю. А. Осипьяна РАН (Черноголовка) исследовали, как изменяется прочность (на изгиб - прим.MetalTorg.Ru) волокнистого композита при изменении свойств границы между его компонентами. В качестве матрицы авторы использовали сплав алюминия и олова, а армировкой служило углеродное волокно. Углеродные нити протягивали через расплав металлов, подвергнутый ультразвуковой обработке, в результате чего получили композитную проволоку. Свойства границы раздела в композите физики изменяли с помощью нагрева до температуры от 300°С до 600°С. После этого исследовали прочность и характер разрушения полученных образцов.
Оказалось, что по мере увеличения температуры поверхность углеродных волокон покрывалась мелкими кристаллами карбида алюминия. В результате этого прочность границы между компонентами становилась выше, а вот прочность композитной проволоки постепенно снижалась. Сильная связь между компонентами приводит к тому, что, когда в материале при нагрузке возникает трещина, она распространяется только в той плоскости, в которой изначально образовалась. Композит быстро разрушается. Напротив, «слабая» граница препятствует развитию трещины и служит для нее своего рода стопором, и ее распространение происходит по сложной траектории, что позволяет волокну в композите в полной мере реализовать свой потенциал прочности.
«Наше исследование демонстрирует влияние одного из самых важных параметров, определяющих механические свойства композита,— прочности границы. Благодаря интерпретации этих данных нам удалось сделать шаг к созданию математической модели прочности волокнистых композитов с металлической матрицей. Глубокое понимание механики разрушения таких структур подскажет нам, как организовать технологию производства композитов, чтобы в полной мере реализовать их потенциал. В будущем именно этим мы и планируем заняться»,— рассказывает руководитель проекта, поддержанного грантом РНФ, Сергей Галышев, кандидат технических наук, старший научный сотрудник Института физики твердого тела им. Ю. А. Осипьяна РАН.